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Abstract—In this document, some novel theoretical
and computational techniques for constrained approx-
imation of data-driven systems, are presented. The
motivation for the development of these techniques
came from structure-preserving matrix approximation
problems that appear in the fields of system identifi-
cation and model predictive control, for data-driven
systems and processes. The research reported in this
document is focused on finite-state approximation of
data-driven systems.

Some numerical implementations of the aforemen-
tioned techniques in the simulation and model predic-
tive control of some generic data-driven systems, that
are related to electrical signal transmission models, are
outlined.

Index Terms—Closed-loop control system, state
transition matrix, singular value decomposition, struc-
tured matrices, pseudospectrum.

I. Introduction

The purpose of this document is to present some novel
theoretical and computational techniques for constrained
approximation of data-driven systems. These systems can
be interpreted as discrete-time systems that can be par-
tially described by difference equations of the form

Σ :

{
xt+1 = F (xt, t), t ≥ 1
x1 ∈ Σ ⊆ Cn (I.1)

where Σ ⊆ Cn is the set of valid states for the sys-
tem, and where F : Cn × R → Cn is some con-
strained map that is either partially known, or needs to
be determined/discovered based on some (sampled) data
{xt}1≤t≤N , obtained in the form of data snapshots related
to the system Σ under study. One can also interpret the
map F in (I.1) as a black-box device, that needs to be
determined in such a way that it can be used to transform
the present state xt into the next state xt+1, according to
(I.1).

Since in this study, the information about a given system
is provided essentially by orbits (data sequences) in some
valid state space Σ, from here on, we will refer to data-
driven systems in terms of sets or elements in a state space
Σ.

The discovery, simulation and predictive control of the
evolution laws for systems of the form (I.1) are highly im-
portant in data-based analytics and forcasting, for models
related to the automatic control of systems and processes
in industry and engineering.

Although, on this paper we will focus on the solution
of the theoretical problems related to the existence and
computability of finite-state approximation of data-driven
systems determined by data sequences described by (I.1),
the constructive nature of the procedures presented in this
document allows one to derive prototypical algorithms like
the one presented in §III. Some numerical implementations
of this prototypical algorithm are presented in §IV.

Given an orbit {xt}t≥1 of a data-driven system Σ de-
termined by (I.1), we will approach the computation of
finite-state approximations of the state transition matrices
{Tt,s}t,s≥1 that satisfy the equations Tt,sxt = xt+s, by
computing a closed-loop control system Σ̂ that is deter-
mined by the decomposition

Σ̂ :


x̂1 = Lx1

x̂t+1 = T̂tx̂t
xt = Kx̂t

, t ≥ 1 (I.2)

related to some available sampled data {x̃t}1≤t≤N ⊆ Σ,
with Σ̂ ⊆ {x̃t}1≤t≤N and where the matrices K,L, {T̂t}t≥1

need to be determined based on the sampled data.
Once a system like (I.2) has been computed, one can

(approximately) describe or predict the behavior of Σ using
the state transition matrices T̂t.

In this study, we build on the abstract machinery
intruduced by Brockett and Willsky in [1]. The main
contribution of this paper is the application of some of the978-1-7281-0883-4/19/$31.00 ©2019 IEEE



operator theoretic techniques developed in [2] to extend
the results in [1] to data-driven systems, and to obtain
new theoretical and computational procedures for the
approximation of data-driven systems, using discrete-time
systems whose time evolution is determined by finite sets
of transition matrices, the details about these procedures
are studied in §II and §III.

II. Cyclic Finite-State Approximation

A. Notation

We will write S1 to denote the unit circle in C that is
determined by the expression {z ∈ C | |z| = 1}.

We will write Z+ to denote the set of positive integers,
and 1n and 0n to denote the identity and zero matrices
in Cn×n, respectively. From here on, given a matrix X ∈
Cm×n, we will write X∗ to denote the conjugate transpose
of X determined by X∗ = X> = [Xji] in Cn×m. We will
represent vectors in Cn as column matrices in Cn×1.

Given two positive integers p, q such that p ≥ q, we will
write p mod q to denote the smallest integer 0 ≤ r < q
such that p = mq + r, for some integer m.

Given a matrix Z ∈ Cn×n, and a polynomial p ∈ C[z]
over the complex numbers determined by the expression
p(z) = a0 + a1z + · · · + amz

m, we will write p(Z) to
denote the matrix in Cn×n defined by the expression
p(Z) = a01n + a1Z + · · ·+ amZ

m, and we will write C[Z]
to denote the matrix set {q(Z)|q ∈ C[z]}.

We will write ‖ · ‖2 to denote the Euclidean norm in Cn
determined by ‖x‖2 =

√
x∗x = (

∑n
j=1 |xj |2)1/2, x ∈ Cn.

Given ε > 0 and A ∈ Cn×n, we will write σε(A) to denote
the ε-pseudospectrum of A, that by [3, Theorem 2.1] is
equivalent to the set of z ∈ C such that

‖(z1n −A)v‖2 < ε (II.1)

for some v ∈ Cn with ‖v‖2 = 1.
In this document we will write êj,n to denote the ma-

trices in Cn×1 representing the canonical basis of Cn (the
j-column of the n×n identity matrix), that are determined
by the expression

êj,n =
[
δ1,j δ2,j · · · δn−1,j δn,j

]>
(II.2)

for each 1 ≤ j ≤ n, where δk,j is the Kronecker delta
determined by the expression.

δk,j =

{
1, k = j
0, k 6= j

(II.3)

B. Generic Cyclic Shift Matrices

Let us consider the matrix Ck,n ∈ Cn×n determined by
the expression.

Ck,n =


0 0 0 · · · δk,1
1 0 0 · · · δk,2
0 1 0 · · · δk,3
...

. . .
. . .

. . .
...

0 · · · 0 1 δk,n

 (II.4)

We call Ck,n ∈ Cn×n a Generic Cyclic Shift matrix
or GCS in this document. It can be seen that a matrix
Ck,n ∈ Cn×n determined by (II.4) can be represented in
the form.

Ck,n = êk,nê
∗
n,n +

n−1∑
j=1

êj+1,nê
∗
j,n (II.5)

Lemma II.1. The GCS matrix Ck,n ∈ Cn×n satisfies the
following conditions.

Ck,nêj,n =

{
êj+1,n, 1 ≤ j ≤ n− 1
êk,n, j = n

(II.6)

Proof. By (II.3) and (II.5) we will have that.

Ck,nêj,n = êk,n(ê∗n,nêj,n) +

n−1∑
s=1

ês+1,n(ê∗s,nêj,n)

= δn,j êk,n +

n−1∑
s=1

δs,j ês+1,n

=

{
êj+1,n, 1 ≤ j ≤ n− 1
êk,n, j = n

This completes the proof.

It can be seen that the GCS matrix Ck,n determined by
(II.4) can be expressed in the form.

Ck,n =
[
ê2,n ê3,n ê4,n · · · êk,n

]
(II.7)

By (II.7) and elementary linear algebra we will have that
Ck,n is the companion matrix of the polynomial pk ∈ C[z]
determined by the expression.

pk(z) = zn − zk−1 (II.8)

This means that each GCS Ck,n ∈ Cn×n satisfies the
equation.

pk(Ck,n) = Cnk,n − Ck−1
k,n = 0n (II.9)

Theorem II.1. Given a GCS matrix Ck,n ∈ Cn×n, the
function τk : Z+ → {1, . . . , n− 1} determined by

τk(t) =

{
t, 1 ≤ t < k − 1
k − 1 + (t− k + 1)mod T, t ≥ k − 1

(II.10)
with T = n − k + 1, satisfies the constraints Ctk,nê1,n =
ê1+τk(t),n, for t ∈ Z+.

Proof. Given two positive integers k, n such that k ≤ n,
and any integer s ≥ k− 1 one can represent s in the form

s = k − 1 + r +m(n− k + 1), (II.11)

for some integers 0 ≤ r ≤ n − k and m ≥ 0. By (II.8)
and (II.11) it can be seen that for any t ≥ k− 1 there are
integers r,m ≥ 0 such that r ≤ n− k and

Ctk,n = C
k−1+r+m(n−k+1)
k,n

= Crk,n(C
(n−k+1)
k,n )mCk−1

k,n = Crk,nC
k−1
k,n .

(II.12)



By (II.12) we will have that for any t ∈ Z+, Ctk,n = C
τk(t)
k,n ,

where τk(t) is defined (II.10). By lemma II.1, (II.8), (II.10)
and (II.12) we will have that for t ∈ Z+, Ctk,nê1,n =

C
τk(t)
k,n ê1,n = ê1+τk(t),n. This completes the proof.

C. Data-Driven Matrix Control Laws

Given a data-driven system Σ in Cn together with an
orbit determined by the sequence {xt}t≥1 ⊆ Σ ⊆ Cn, and
given some integer 1 ≤ S � n, by a data-driven control
law based on a sample {x̃t}1≤t≤S ⊆ {xt}t≥1, we will mean
a matrix set {Ft}1≤t≤S−1 in Cn×n such that Ftx̃1 = x̃t+1

and rank(Ft) ≤ S for each 1 ≤ t ≤ S − 1.

We will say that an orbit {xt}t≥1 ⊆ Σ ⊆ Cn of a data-
driven system Σ is approximately eventually periodic
(AEP), if for any ε > 0 there are two integers T ′ ≥ 1,
s′ ≥ 0, and a vector sequence {x̃t}t≥1 ⊂ Cn of non-zero
vectors such that.{

‖x̃t − xt‖2 ≤ ε
x̃t+s′+T ′ = x̃t+s′

, t ∈ Z+ (II.13)

Let us consider the smallest integers 0 ≤ s ≤ s′ and
1 ≤ T ≤ T ′, for which the relations (II.13) still hold, the
number s + T + 1 will be called the ε-index of the orbit
{xt}t≥1, and will be denoted by indε({xt}).

Given an orbit {xt}t≥1 of a data-driven system Σ. We
say that the control law {Ft}1≤t≤S−1 based on some
sample {x̃t}1≤t≤S is meaningful, if it (approximately)
mimics the dynamical behavior of {xt}t≥1 nearby x̃1 ∈ Σ,
in particular, if each matrix Fs resembles the spectral (or
pseudospectral) behavior of the connecting matrix K (in
the sense of [4, §2] and [5, §2.2]) of the data-driven system
Σ under study, that approximately satisfies the equations
Kx̃t = x̃t+1, 1 ≤ t ≤ S − 1.

The matrix control laws for the orbit’s data {xt}t≥1 ⊂
Cn of a data-driven system Σ are also related to the
connecting operator K, for some given orbit’s sampled
data {x̃t}1≤t≤S with S � n, by the constrained matrix
equations.{

Ftx̃1 = Kx̃1+t

rank(Ft) ≤ S
, 1 ≤ t ≤ S − 1 (II.14)

Given an orbit {xt}t≥1 ⊂ Cn of a data-driven system
Σ, we say that {xt}t≥1 is cyclically controlled, if there
is a meaningful control law {Ft}1≤t≤S−1 ⊂ Cn×n based
on some sample {x̃t}1≤t≤S ⊆ {xt}t≥1 such that for each
t ≥ 1, there is 1 ≤ τ(t) ≤ S such that xt+1 = Fτ(t)xt, and
if in addition, there are α > 0 and matrices K,L ∈ Cn,
Zm ∈ Cn×m such that Fτ(t) = αKZmCτ(t)

k,mZ
∗
mL, t ∈ Z+

K2 = K∗ = K
L2 = L∗ = L

(II.15)

where Ck,m is the GCS matrix determined by (II.4). One
can notice that (II.15) produces a representation for the

evolution of {xt}t≥1 in terms of the following closed-loop
discrete-time system.

Σ̃ :


x̂1 = αLx1

x̂t+1 = ZmC
τ(t)
k,mZ

∗
mx̂t, t ∈ Z+

xt = Kx̂t
(II.16)

We call the system Σ̃ described by (II.16) a cyclic finite-
state approximation (CFSA) of the data-driven system Σ
based on the sample {x̃t}1≤t≤S ⊆ Σ, and the GCS Ck,m
in (II.16) will be called the GCS factor of the CFSA Σ̃
based on {x̃t}1≤t≤S .

Because of (II.15) and (II.16), one can interpret the
computation of a CFSA Σ̃ for a given data-driven system
Σ, as a structure preserving matrix approximation prob-
lem for structured matrices determined by (II.15).

1) Predictive finite state approximations: We will study
the existence of cyclic finite-state approximations of the
form (II.16) for approximately eventually periodic orbits
of data-driven systems.

Let us consider an orbit’s sample {xt}1≤t≤N from a
data-driven system Σ, and consider the connecting matrix
K determined by dynamic mode decomposition (in the
sense of [4, §2]), we will have that K is an approximate
solution to the matrix equation

KW (0) = W (1) = W (0)S (II.17)

with W (0) = [x1 · · · xN−1], W (1) = [x2 · · · xN ], and
where the companion matrix S in (II.17) can be approxi-
mated by the least squares solution to the matrix equation
W (0)S = W (1). We can extend [2, Lemma 3.3] to obtain
the following matrix decomposition theorem.

Theorem II.2. Given ε > 0, an AEP orbit {xt}t≥1

of a data-driven system Σ ⊆ Cn has a CFSA whenever
2 indε({xt}) ≤ n.

Proof. Given ε > 0, and any AEP orbit {xt}t≥1 of a data-
driven system Σ such that 2 indε({xt}) ≤ n. We will have
that there are integers T ≥ 1, s ≥ 0, and a sequence
{x̃t}t≥1 ⊂ Cn of non-zero vectors such that ‖x̃t − xt‖2 ≤
ε, x̃t+s+T = x̃s+t for each t ≥ 1, with 2(s + T + 1) =
2 indε({xt}) ≤ n.

Since x̃t+s+T = x̃t+s for each t ≥ 1, one can find
a sample {x̃t}1≤t≤s+T ⊆ {x̃t}t≥1 such that {x̃t}t≥1 ⊆
{x̃t}1≤t≤s+T . Let us consider the snapshot matrix X ∈
Cn×(s+T ) determined by the expression.

X =
[
x̃1 x̃2 · · · x̃s · · · x̃s+T

]
(II.18)

By singular value decomposition properties we will have
that X can be decomposed in the form,

X = USV (II.19)

where U ∈ Cn×(s+T ) and V ∈ C(s+T )×(s+T ) satisfy U∗U =
1s+T = V ∗V and where S = [sij ] ∈ R(s+T )×(s+T ) is a
diagonal matrix with non-negative entries, such that.{

s11 > 0
s11 ≥ sjj , 1 ≤ j ≤ s+ T

(II.20)



Since 2(s+T+1) = 2 indε({xt}) ≤ n, by Gram-Schmidt
orthogonalization theorem we will have that there is W ∈
Cn×(s+T ) such that.{

W ∗W = 1s+T
W ∗U = 0s+T

(II.21)

Let us define a diagonal matrix T̂ = [tij ] in R(s+T )×(s+T )

such that.

tjj =

√
1−

(
sjj
s11

)2

, 1 ≤ j ≤ s+ T (II.22)

Let us set. 
X̂ = (1/s11)USV

Ŷ = WT̂V

Ẑ = X̂ + Ŷ

(II.23)

By (II.19), (II.23) and by direct computation we will
have that X = s11X̂ and Ẑ∗Ẑ = 1s+T . Let us consider
a representation for the matrix Ẑ of the form Ẑ =
[ẑ1 ẑ2 · · · ẑs+T ], and let us set.

K = UU∗

T = ẐCs+1,s+T Ẑ
∗

L = ẑ1ẑ
∗
1

(II.24)

By theorem II.1 and by direct computation we will have
that.

T tẑ1 = ẐCts+1,s+T Ẑ
∗ẑ1 = ẐCts+1,s+T êj,s+T

= Ẑê1+τs+1(t),s+T = ẑ1+τs+1(t) (II.25)

By (II.23) and (II.21) we will have that.

ẑ∗1 x̃1 =
x̃∗1x̃1

s11
=
‖x̃1‖22
s11

> 0 (II.26)

One can now easily verify that.
K2 = K = K∗
L2 = L = L∗
KẐ = X̂
Lx̃1 = (ẑ∗1 x̃1)ẑ1

(II.27)

Let us set α = s2
11/‖x̃1‖22, we will have that α > 0. By

(II.12), (II.24), (II.25) and (II.26) we will have that for
each t ∈ Z+.

αKT tLx̃1 = K s11

(ẑ∗1 x̃1)
T tLx̃1

= Ks11T tẑ1 = s11Kẑ1+τs+1(t)

=
s11

s11
x̃1+τ(t) = x̃1+τs+1(t) (II.28)

Let us set Ft = αKẐCτs+1(t)
s+1,s+T Ẑ

∗L, with τs+1 defined
by (II.10). By (II.25),(II.27) and (II.28), we will have that
{Ft}t≥1 is a meaningful matrix control law for {x̃t}t≥1,
and the evolution of {x̃}t≥1 will be controlled by the
closed-loop system.

Σ̃ :


x̂1 = αLx̃1

x̂t+1 = ẐC
τs+1(t)
s+1,s+T Ẑ

∗x̂t, t ∈ Z+

x̃t = Kx̂t
(II.29)

This completes the proof.

By combining (II.15) and (II.17), one can derive the
following classification/approximation result.

Theorem II.3. Given some orbit’s sampled data
{x̃t}1≤t≤N from a data-driven system Σ ⊆ Cn with 2N ≤
n, we will have that the integer index k of the GCS factor
Ck,N−1 of the CFSA Σ̃ based on the sample, is determined
by k = arg min1≤j≤N−1‖x̃j − x̃N‖2.

Proof. Let us set W (0) = [x̃1 · · · x̃N−1], W (1) =
[x̃2 · · · x̃N ], and let us write ĉN−1 to denote the (N − 1)-
column of Ck,N−1. By changing basis and reordering, if
necessary, one can think of the GCS factor Ck,N−1 for the
CFSA Σ̃ as a least squares solution to the matrix equation

W (1) = W (0)Ck,N−1 (II.30)

where only ĉN−1 needs to be determined, and is con-
strained by (II.4) to satisfy ĉN−1 = êk,n for some
1 ≤ k ≤ N − 1. This in turn implies that k =
arg min1≤j≤N−1‖W (0)êj,n−x̃N‖2 = arg min1≤j≤N−1‖x̃j−
x̃N‖2. This completes the proof.

III. Algorithm

We have that the matrix techniques implemented in
the proofs of theorem II.2 and theorem II.3, can be
used to derive a prototypical data-driven cyclic finite-state
approximation algorithm that is described by algorithm 1.

Algorithm 1 Data-driven cyclic finite-state approxima-
tion algorithm

Data: Real number ε > 0, State data history:
{xt}1≤t≤s+T+1, s, T ∈ Z+

Result: Approximate matrix realizations:
(K, T ,L) ∈ Cn×n × Cn×n × Cn×n of Σ̃

1) Set m = s+ T
2) Get/Compute sample {xt}1≤t≤m+1 from Σ
3) Compute k = arg min1≤j≤m‖xm+1 − xj‖2
4) Compute the SVD USV = [x1 · · · xm]
5) Compute the matrix Ẑm = [ẑ1 · · · ẑm] in (II.23)

for {xt}1≤t≤m
6) Set K = VV∗
7) Set L = (s2

11/‖x̃1‖22)ẑ1ẑ
∗
1

8) Set T = ẐmCk,mẐ∗m
return {K, T ,L}

Given some system’s state data history {xt}1≤t≤s+T+1

and a tolerance value ε > 0, algorithm 1 produces a matrix
realization for the system that is determined by three



matrices {K, T ,L} that satisfy (I.2) and (II.15), this is
illustrated in the following transition diagram.

Z−1 K
x̂t

T̂t

C[Ck,m]

x̂t+1 xt

The map C[Ck,m] → {T̂t|t ∈ Z+} is determined by the
assignment rule T̂t := T t = ẐmCtk,mẐ∗m, t ∈ Z+.

IV. Numerical Experiments

In this section we will consider generic mathematical
models for transmission lines determined by equations of
the form

∂2
t ψ = γ2∂2

xψ + δ∂tψ + βψ, (x, t) ∈ (0, L)× (0,∞)
ψ(x, 0) = ψ0(x)
∂tψ(x, 0) = ψ1(x)
∂xψ(0, t) = ψ(L, t) = 0

(IV.1)
where L represents the length of a section of the transmis-
sion lines, ψ represents voltage or current distribution, and
the coefficients γ, δ, β are determined by the expressions

γ =
1√
LC

, δ = −RC +GL

LC
, β = −GR

LC
(IV.2)

where G,R,C,L denote the conductance, resistance, ca-
pacitance and inductance of the transmission lines, re-
spectively. Discretizations of (IV.1) will be computed
using second-order Crank-Nicolson-type finite-difference
schemes of the form{

AΦt+1 = BΦt
Ψt = CΦt

, t ≥ 1 (IV.3)

for some matrices A,B ∈ C20002×20002 and C ∈
C10001×20002, with A invertible and Φt ∈ C20002×1 for each
t ≥ 1.

Generic models of the form (IV.1) and (IV.3) have
applications in the simulation of transmission lines for
electrical signals in embedded and power systems, among
other applications.

Experiment 1: Lossy transmission lines

For a transmission line with electrical coefficients: R =
172.70 Ω/km, G = 0.531 µS/km, L = 0.6099 mH/km,
C = 51.57 nF/km, the signal pattern corresponding to
a set of 601 samples Σ601 ⊂ C10001×1 extracted from the
signal pattern data of a Gaussian voltage pulse simulated
by model (IV.3), is shown in fig. 1. For a tolerance ε =
1×10−10 the behavior forcasting computed using the CFS

Figure 1. Signal pattern corresponding to a set of 601 data samples
for a lossy tranmission line model.

Figure 2. Predictive simulations corresponding to CFS approximants
of a lossy tranmission line model based on 301 data samples (top),
and based on 151 data samples (bottom).

approximants based on data sub-samples Σε,151,Σε,301 ⊂
Σ601 of size 151 and 301, respectively, are shown fig. 2.

In order to visualize the meaningfulness of the control
laws of the CFS approximants based on Σε,301 and Σε,151

for the tolerance ε = 1×10−10, the pseudospectra σε(SΣN
)

and σε(Ck,N−1) for N ∈ {301, 151} and ε ∈ [0, ε′], with
ε′ > 0 fixed, for the companion matrices SΣN

determined
by (II.17), and the GCS factors Ck,N−1 predicted for the
data-driven system determined by (IV.3) by theorem II.3
and algorithm 1, are shown in fig. 3.

Figure 3. Pseudospectra σε(SΣ301
) (top-left), σε(C300,300) (top-

right), σε(SΣ151 ) (bottom-left), σε(C150,150) (bottom-right), for 0 ≤
ε ≤ ε′. The black lines represent elements in the pseudospectra, the
blue lines represent S1, and the red dots represent the eigenvalues.



Experiment 2: Lossless transmission lines

For a transmission line with electrical coefficients: R =
0 Ω/km, G = 0 µS/km, L = 0.6099 mH/km, C =
51.57 nF/km, the signal pattern corresponding to a set of
601 samples Σ601 ⊂ C10001 extracted from the signal pat-
tern data of a Gaussian voltage pulse simulated by model
(IV.3), is shown in fig. 4. For a tolerance ε = 1×10−10 the
behavior forcasting computed using the CFS approximants
based on data sub-samples Σε,151,Σε,301 ⊂ Σ601 of size 151
and 301, respectively, are shown fig. 5.

Figure 4. Signal pattern corresponding to a set of 601 data samples
for a lossless tranmission line model.

Figure 5. Predictive simulations for CFS approximants of a lossless
tranmission line model based on 301 data samples (top), and based
on 151 data samples (bottom).

In order to visualize the meaningfulness of the control
laws of the CFS approximants corresponding to Σε,151 and
Σε,301 for the tolerance ε = 1× 10−10, the pseudospectra
of the companion matrices SΣN

and the predicted GCS
factors Ck,N−1 for N ∈ {151, 301} are shown in fig. 6.

V. Conclusion and Future Directions

The results in §II-C1 allow one to derive computational
methods like the one described in algorithm 1, for finite
state approximation/forcasting of the dynamical behavior
of a data-driven system determined by some data sampled
from a set of valid/feasible states.

Some applications of algorithm 1 to data-based artifi-
cially intelligent schemes that learn from mistakes, and
can be used for model predictive control of industrial
processes, will be presented in future communications.

The connections of the results in §II-C1 to the solution
of problems related to controllability and realizability of
finite-state systems in classical and quantum information
and automata theory, in the sense of [1], [6]–[8], will be
further explored.

Figure 6. Pseudospectra σε(SΣ301
) (top-left), σε(C17,300) (top-

right), σε(SΣ151 ) (bottom-left), σε(C9,150) (bottom-right), for 0 ≤
ε ≤ ε′. The black lines represent elements in the pseudospectra, the
blue lines represent S1, and the red dots represent the eigenvalues.

Further applications of cyclic finite-state approximation
schemes to industrial automation and Building Informa-
tion Modeling technologies, will be the subject of future
communications.
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