Universidad Nacional Autónoma de Honduras

Escuela de Matemática y Ciencias de la Computación Centro de Innovación en Cónputo Científico CICC-UNAH

Lecturas de Modelación Matemática

PRINICIPIOS DE CÓMPUTO DE MODELOS LINEALES APROXIMANTES ESTÁTICOS

Profesor: Dr. Fredy Vides

Índice

1.	Principios de Modelos Lineales Aproximantes Estáticos	1
	1.1. Nociones Modelos Lineales Aproximates Estáticos	1
2.	Modelos Lineales Aproximantes Estáticos de la Forma: $Y = AX$	2
	2.1. Mínimos cuadrados y cómputo de modelos lineales estáticos aproximantes	
	de la forma: $Y = AX$	2

1. Principios de Modelos Lineales Aproximantes Estáticos

1.1. Nociones Modelos Lineales Aproximates Estáticos

Definición 1.1. Dadas $X_j \in \mathbb{C}^{n_j \times r}$ para $j = 1, \dots, n$, en este curso se escribirá $\operatorname{col}(X_1, \dots, X_n)$ para denotar la operación determinada por la siguiente expresión.

$$\operatorname{col}(X_1, \dots, X_n) := \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$

Definición 1.2. Dado un conjunto de datos \mathscr{D} correspondientes a resultados de un experimento \mathbb{E} , en un conjunto universal \mathscr{U} de posibles resultados. Se denomina modelo aproximante lineal estático correspondiente al experimento \mathscr{E} al conjunto $\mathscr{M}_{\mathbb{E}}$ determinado por la siguiente expresión.

$$\mathscr{M}_{\mathbb{E}} := \{ d \in \mathscr{U} : f_E(d) = 0 \} \tag{1.1}$$

donde $f_E \in (\mathbb{C}^m)^{\mathscr{U}}$ (f_E es una función de \mathscr{U} a \mathbb{C}^m para algún entero positivo m). La expresión (1.1) recibirá el nombre de representación en este curso.

Notación 1.3. Cuando el experimento \mathbb{E} al que hace referencia un modelo $\mathscr{M}_{\mathbb{E}}$ es claro en el contexto de un problema, se omitirá la referencia explícita a \mathbb{E} en el modelo y se escribirá solamente \mathscr{M} en lugar de $\mathscr{M}_{\mathbb{E}}$.

2. Modelos Lineales Aproximantes Estáticos de la Forma: Y = AX

Dados $X \in \mathbb{C}^{n \times r}$ e $Y \in \mathbb{C}^{n \times r}$ es claro que los modelos de la forma Y = AX basados en datos $\mathscr{D}_N := \{(Y_j, X_j)\}_{j=1}^N \subset \mathscr{U}$ en un universo de resultados \mathscr{U} puede ser representado en términos de datos en un universo $\hat{\mathscr{U}}$ relacionado con \mathscr{U} a través de la relación $\operatorname{col}(Y, X) \in \hat{\mathscr{U}} \Leftrightarrow (Y, X) \in \mathscr{U}$, y de la siguiente representación.

$$\mathcal{M}_{AX} := \left\{ \operatorname{col}(Y, X) \in \hat{\mathcal{U}} : \begin{bmatrix} I & -A \end{bmatrix} \operatorname{col}(Y, X) = 0 \right\}$$
(2.1)

2.1. Mínimos cuadrados y cómputo de modelos lineales estáticos aproximantes de la forma: Y = AX

El cómputo de modelos *exactos* \mathcal{M}_{AX} de la forma (2.1) es poco realista, en lugar de una representación exacta de la forma (2.1), en la práctica se consideran representaciones alternativas aproximadas basadas en una muestra $\hat{\mathcal{D}}_N = \{\operatorname{col}(Y_j, X_j)\} \subset \mathcal{U}$ de la forma.

$$\tilde{\mathcal{M}}_{AX} := \left\{ A \in \mathbb{C}^{n \times m} : A = \arg \min_{\hat{A} \in \mathbb{C}^{n \times m}} \sum_{j=1}^{N} \left\| \begin{bmatrix} I & -\hat{A} \end{bmatrix} \operatorname{col}(Y_j, X_j) \right\|_{2}^{2} \right\}$$
(2.2)

Un razonamiento similar al presentado en la sección [2, §Matrix least squares (pág. 223)] permite obtener el siguiente lema técnico.

Lema 2.1. Dada una muestra $\hat{\mathcal{D}}_N = \{(Y_j, X_j)\}_{j=1}^N \subset \mathcal{U}$ en un universo de resultados \mathcal{U} como el considerado previamente. Si se define $Y = \begin{bmatrix} Y_1 & \cdots & Y_N \end{bmatrix}$ y $X = \begin{bmatrix} X_1 & \cdots & X_N \end{bmatrix}$, entonces $A \in \tilde{\mathcal{M}}_{AX}$, si y solo si $A = YX^+$.

Demostración. Ejercicio para el lector.

Ejercicio Resuelto 1. Sea $A \in \mathbb{R}^{3\times 3}$ la matriz definida por la expresión:

$$A = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$

Dada una matriz de datos $X \in \mathbb{R}^{3\times 3}$ cuyas columnas han sido generadas al azar verificar (de forma aproximada) computacionalmente el lema 2.1 con respecto al vector de datos Y = AX.

Solución. Para realizar esta verificación utilizaremos Octave. Es posible ingresar/generar $A, X, Y \in \mathbb{R}^{3 \times 3}$ utilizando las siguientes secuencias de comandos.

- >> A=[-2 1 0;1 -2 1;0 1 -2]; >> X=randn(3);
- >> Y=A * X;

La primer parte de la verificación puede realizarse calculando una matriz $A_1 \in \tilde{\mathcal{M}}_{AX}$ implementando directamente la definición a través programación cuadrática secuencia, utilizando de la siguiente secuencia de comandos:

```
>> phi=@(a) norm(Y-reshape(a,3,3)*X,'fro')^2;
>> [A1,obj,info,iter,nf,lambda]=sqp(zeros(9,1),phi,[],...
> [],[],[],le-12);
>> A1=reshape (A1,3,3)
A1 =

-1.9999999975692  0.9999999763382  0.0000000408414
  1.0000000020822  -2.0000000226371  1.0000000385234
  0.0000000021409  0.9999999771977  -1.99999999611062
```

Ahora calcularemos $A_1 \in \tilde{\mathcal{M}}_{AX}$ aplicando el lema 2.1 a través de la siguiente secuencia de comandos.

```
>> A2=Y*pinv(X)
A2 =

-2.0000e+00    1.0000e+00    -4.4409e-16
    1.0000e+00    -2.0000e+00     1.0000e+00
    -6.1062e-16    1.0000e+00    -2.0000e+00
```

Referencias

- [1] I. Markovsky, S. Van Huffel, J. C. Willems, B. De Moor (2005). Exact and Approximate Modeling of Linear Systems: A Behavioral Approach. SIAM.
- [2] S. Boyd, L. Vandenberghe. (2018). Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares. Cambridge University Press.
- [3] A. Quarteroni, F. Saleri, P. Gervasio. (2014). Scientific computing with MATLAB and Octave (4thEd). Springer.