Lecturas de Optimización Numérica: SISTEMAS DE ECUACIONES LINEALES Y NORMAS VECTORIALES Y MATRICIALES

Prof. Dr. Fredy Vides Scientific Computing Innovation Center, UNAH & Centre for Analysis of Data-Driven Systems E-mail: fredy.vides@unah.edu.hn

ÍNDICE

Objetivos	1
1. Sistemas de Ecuaciones Lineales	
1.1. Operaciones Elementales	1
2. Normas Vectoriales y Matriciales	,
2.1. Normas matriciales	4
Referencias	5

OBJETIVOS

- 1. Estudiar algunas propiedades elementales de los sistemas de ecuaciones lineales.
- 2. Estudiar algunas propiedades elementales de las normas vectoriales y matriciales.

1. SISTEMAS DE ECUACIONES LINEALES

1.1. Operaciones Elementales. Dado un sistema de ecuaciones lineales con coeficientes reales de la forma:

(1.1)
$$\begin{cases} E_1: a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ E_2: a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \dots \\ E_m: a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

Donde cada E_j representa la j-ésima ecuación del sistema (1.1). Consideremos las tres operaciones elementales básicas de la forma:

- 1. $E_j \leftarrow \alpha E_j$, $\alpha \in \mathbb{R} \setminus \{0\}$ ($\alpha \in \mathbb{R} \setminus \{0\}$ significa que α es un número real distinto de 0)
- 2. $E_k \leftarrow E_k + \alpha E_j, \alpha \in \mathbb{R} \setminus \{0\}$
- 3. $E_k \longleftrightarrow E_i$

Considerando ahora la representación matricial de (1.1) de la forma:

$$(1.2) Ax = b$$

donde $A \in \mathbb{R}^{m \times n}$ (A es una matriz de $m \times n$) y $b \in \mathbb{R}^{m \times 1}$.

(1.3)
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

La matriz aumentada de (1.2) puede escribirse en la forma:

$$\begin{bmatrix} A & | & b \end{bmatrix}$$

Tenemos que a cada operación elemental de ecuaciones en (1.1), corresponde una operación elemental de renglones en (1.4), que en el resto del curso representaremos con la misma notación.

Notación. En el resto del curso nos referiremos a las operaciones elementales (de ecuaciones de (1.1) o renglones de (1.4)) como operaciones elementales de tipo 1,2 o 3, seguún la numeración que hemos considerado en esta sección.

Observación. Notemos que cada operación elemental puede revertirse con una operación elemental del mismo tipo.

Ejemplo: La operación $E_j \longleftarrow \alpha E_j$, para $\alpha \in \mathbb{R} \setminus \{0\}$ produce una nueva ecuación E'_j de la forma:

$$E_j': \alpha a_{j1}x_1 + \dots + \alpha a_{jn}x_n = \alpha b_j$$

De modo que la operación $E'_j \longleftarrow \frac{1}{\alpha} E'_j$ produce una ecuación E''_j de la forma:

$$E_j'': \frac{1}{\alpha} \alpha a_{j1} x_1 + \dots + \frac{1}{\alpha} \alpha a_{jn} x_n = \frac{1}{\alpha} \alpha b_j$$
$$: a_{j1} x_1 + \dots + a_{jn} x_n = b_j$$

y tenemos entonces que E_j'' y E_j describen la misma ecuación. Dado que E_j es una expresión arbitraria y suficientemente general, toda operación elemental del primer tipo puede anularse o revertirse con una operación elemental del primer tipo.

Ejemplo: Consideremos el siguiente sistema de ecuaciones:

(1.5)
$$\begin{cases} E_1: a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ E_2: a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ E_3: a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

con matriz aumentada correspondiente:

(1.6)
$$A_b = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$$

La operación elemental de renglones $R_2 \leftarrow \alpha R_2$, $\alpha \in \mathbb{R} \setminus \{0\}$ de A_b puede realizarse multiplicando la matriz:

(1.7)
$$E_2(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

por la izquierda de A_b , en efecto:

$$E_2(\alpha)A_b = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ \alpha a_{21} & \alpha a_{22} & \alpha a_{23} & \alpha b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$$

La operación elemental de renglones $R_3 \leftarrow R_3 + \alpha R_1$, $\alpha \in \mathbb{R} \setminus \{0\}$ de A_b puede realizarse multiplicando la matriz:

(1.8)
$$E_{31}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \alpha & 0 & 1 \end{bmatrix}$$

por la izquierda de A_b , en efecto:

$$E_{31}(\alpha)A_b = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} + \alpha a_{11} & a_{32} + \alpha a_{12} & a_{33} + \alpha a_{13} & b_3 + \alpha b_1 \end{bmatrix}$$

La operación elemental de renglones $R_1 \longleftrightarrow R_2$ de A_b puede realizarse multiplicando la matriz:

(1.9)
$$E_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

por la izquierda de A_b , en efecto:

$$E_{12}A_b = \left[\begin{array}{ccc|c} a_{21} & a_{22} & a_{23} & b_2 \\ a_{11} & a_{12} & a_{13} & b_1 \\ a_{31} & a_{32} & a_{33} & b_3 \end{array} \right]$$

Ejercicio para el lector: Verificar que en efecto, cada operación elemental puede revertirse con una opración elemental del mismo timpo.

Ejercicio para el lector: Considerando la matriz aumentada (1.4), verificar que existe una matriz $\mathbf{E}_{jk}(\alpha)$ que multiplicada por la izquierda de (1.4), realiza la operación elemental por renglones, correspondiente a una operación elemental de tipo 2.

2. NORMAS VECTORIALES Y MATRICIALES

2.0.1. *Normas vectoriales.* **Definición.** Una norma vectorial en \mathbb{R}^n es una función $\|\cdot\|$: $\mathbb{R}^n \to \mathbb{R}$ con las siguientes propiedades:

- 1. $||x|| \ge 0, x \in \mathbb{R}^n$
- 2. ||x|| = 0, ssi x = 0
- 3. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$, $x \in \mathbb{R}^n$
- 4. $||x+y|| \le ||x|| + ||y||, x, y \in \mathbb{R}^n$

Notación. En este curso identificaremos \mathbb{R}^n con $\mathbb{R}^{n \times 1}$, es decir, consideraremos los vectores en \mathbb{R}^n , como matrices columna de $n \times 1$. En general, un vector arbitrario $x \in \mathbb{R}^n$ se representará como:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Una familia de normas vectoriales que estudiaremos con frecuencia en este curso son las normas de la forma.

(2.1)
$$||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}, x \in \mathbb{R}^n$$

Un tipo especial de norma vectorial también importante es la norma definida por la expresión.

$$||x||_{\infty} = \max_{1 \le j \le n} |x_j|, x \in \mathbb{R}^n$$

Propiedad. Designaldad Cauchy-Bunyakovsky-Schwarz para sumas) Dados $x, y \in \mathbb{R}^n$:

$$|x \cdot y| = |x^{\top}y| = \left| \sum_{j=1}^{n} x_j y_j \right| \le ||x||_2 ||y||_2$$

donde x^{\top} denota la transpuesta de x, y donde $x \cdot y$ denota el producto punto o producto escalar entre x e y.

Definición La distancia d_* inducida por la norma $\|\cdot\|_*$, está definida por la expresión $d_*(x,y) = \|x-y\|_*$, $x,y \in \mathbb{R}^n$.

Definición Una sucesión $\{x_n\}_{n\geq 1}\subset \mathbb{R}^n$ se dice que converge a $x\in \mathbb{R}^n$ con respecto a distancia d_* , si $\lim_{n\to\infty} d_*(x_n,x)=0$.

Propiedad. Para $x \in \mathbb{R}^n$,

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$$

Observación. Dado $x \in \mathbb{R}^n$:

$$||x||_2^2 = \sum_{j=1}^n |x_j|^2 \le \sum_{j=1}^n \sum_{k=1}^n |x_j| |x_k| = \left(\sum_{j=1}^n |x_j|\right)^2 = ||x||_1^2$$

 $\Longrightarrow ||x||_2 \le ||x||_1.$

Ejercicio para el lector. Verificar que $d_2(x,y) \leq d_1(x,y)$ para $x,y \in \mathbb{R}^n$.

- **2.1.** Normas matriciales. Definición Una norma matricial en $\mathbb{R}^{n\times n}$ (el conjunto de matrices reales de $n\times n$), es una función $\|\cdot\|:\mathbb{R}^{n\times n}\to\mathbb{R}$ con las siguientes propiedades:
 - 1. $||A|| \geq 0$, $A \in \mathbb{R}^{n \times n}$
 - 2. ||A|| = 0, ssi A = 0 (A es igual a la matriz 0)
 - 3. $\|\alpha A\| = |\alpha| \|A\|$, $\alpha \in \mathbb{R}$, $A \in \mathbb{R}^{n \times n}$
 - 4. $||A + B|| \le ||A|| + ||B||$, $A, B \in \mathbb{R}^{n \times n}$
 - 5. $||AB|| \le ||A|| ||B||$, $A, B \in \mathbb{R}^{n \times n}$

La distancia d inducida en $\mathbb{R}^{n\times n}$ por la norma $\|\cdot\|$ se define como $d(A,B)=\|A-B\|$, $A,B\in\mathbb{R}^{n\times n}$.

Propiedad. Si $\|\cdot\|$ es una norma vectorial en \mathbb{R}^n , entonces

(2.3)
$$||A|| = \max_{||x||=1} ||Ax||$$

es una norma matricial.

Notación. Las normas matriciales de la forma (2.3) reciben el nombre de normas inducidas por la norma vectorial $\|\cdot\|$.

Observación. Para cualquier $y \in \mathbb{R}^n \setminus \{0\}$ ($y \neq \mathbf{0}$), tenemos que $\|(1/\|y\|)y\| = \|y\|/\|y\| = 1$ \Longrightarrow para cualquier $A \in \mathbb{R}^{n \times n}$:

$$\frac{1}{\|y\|}\|Ay\| = \left\|A\left(\frac{1}{\|y\|}y\right)\right\| \le \max_{\|z\|=1} \|Az\| = \|A\|$$

 \Longrightarrow

$$\|Ay\| \leq \|A\| \|y\|$$

Propiedad. Para cada $A = [a_{jk}] \in \mathbb{R}^{n \times n}$,

$$||A||_{\infty} = \max_{\|x\|_{\infty}=1} ||Ax||_{\infty} = \max_{1 \le j \le n} \sum_{k=1}^{n} |a_{jk}|$$

Ejercicio para el lector. Dada una matriz $A = [a_{ik}] \in \mathbb{R}^{n \times n}$, sea

$$r(A) = \sum_{j=1}^{n} \sum_{k=1}^{n} |a_{jk}|,$$

- (a) Probar o refutar que $||Ax||_2 \le r(A)||x||_2$, $x \in \mathbb{R}^n$.
- (b) Probar o refutar que $||A||_2 \le r(A)$.

REFERENCIAS

- [1] R. L. Burden, D. J. Faires, A. M. Burden. (2017). Análisis Numérico. 10a Ed. Cengage Learning Editores.
- [2] Quarteroni A., Saleri F., Gervasio P. (2014). Scientific computing with MATLAB and Octave (Textbook).
- [3] D. G. Luenberger, Y. Ye. (2016). Linear and Nonlinear Programming. 4a Ed. Springer International Publishing Switzerland.