Semana 9: Transformada de Fourier y Aplicaciones en EDPs

Curso de EDPs

March 17, 2025

Objetivo de la Semana 9

- Introducir la Transformada de Fourier y su uso en la resolución de EDPs en dominios infinitos.
- Aplicar la transformada de Fourier en la ecuación del calor y ecuaciones hiperbólicas.
- Explorar los espacios de Schwartz y el concepto de puntos fijos del operador de Transformada de Fourier.

Definición de la Transformada de Fourier

La transformada de Fourier de una función f(x) está definida como:

$$\hat{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx.$$

La transformada inversa se expresa como:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} dk.$$

Transformada de Fourier y la Ecuación del Calor

La ecuación del calor en un dominio infinito:

$$u_t = ku_{xx}, \quad -\infty < x < \infty, \quad t > 0.$$

Tomando la transformada de Fourier en x, obtenemos:

$$\frac{d}{dt}\hat{u}(k,t) = -kk^2\hat{u}(k,t).$$

Resolviendo, obtenemos:

$$\hat{u}(k,t) = \hat{u}(k,0)e^{-kk^2t}.$$

Aplicando la transformada inversa, encontramos la solución mediante el **núcleo de calor**:

$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} u(y,0)e^{-\frac{(x-y)^2}{4kt}} dy.$$

Transformada de Fourier y Ecuaciones Hiperbólicas

Para la ecuación de onda:

$$u_{tt} = c^2 u_{xx},$$

tomamos la transformada de Fourier en x y obtenemos:

$$\hat{u}_{tt} + c^2 k^2 \hat{u} = 0.$$

La solución es de la forma:

$$\hat{u}(k,t) = A(k)e^{ickt} + B(k)e^{-ickt}$$
.

Aplicando la transformada inversa, recuperamos la solución de d'Alembert en el dominio espacial.

Espacios de Schwartz y la Transformada de Fourier

El espacio de Schwartz, $S(\mathbb{R})$, está compuesto por funciones f(x) que son suavemente diferenciables y cuyas derivadas decrecen más rápido que cualquier potencia de x, es decir:

$$\sup_{x\in\mathbb{R}}|x^m\partial^n f(x)|<\infty,\quad\forall m,n\geq 0.$$

Las funciones en $\mathcal{S}(\mathbb{R})$ tienen la propiedad de que su transformada de Fourier también pertenece a $\mathcal{S}(\mathbb{R})$, lo que facilita la manipulación de soluciones en dominios infinitos.

Puntos Fijos de la Transformada de Fourier

Una función f(x) es un punto fijo de la transformada de Fourier si:

$$\mathcal{F}[f] = \lambda f, \quad \lambda \in \mathbb{C}.$$

Ejemplos de puntos fijos incluyen:

La función Gaussiana normalizada:

$$f(x) = e^{-x^2} \Rightarrow \mathcal{F}[f](k) = e^{-k^2}.$$

Combinaciones de funciones exponenciales y polinomiales.

Cálculo de Puntos Fijos

Para calcular los puntos fijos de la transformada de Fourier, se pueden seguir los siguientes pasos:

- 1. Suponer una forma funcional f(x) y calcular explícitamente su transformada de Fourier.
- 2. Resolver la ecuación $\mathcal{F}[f] = \lambda f$ imponiendo restricciones sobre f.
- Identificar funciones auto-recursivas bajo la aplicación iterativa de F.

Un método práctico es iterar la transformada de Fourier numéricamente sobre una función y observar su convergencia.

Expansión en Operadores de Fourier

Considerando el operador normalizado de Transformada de Fourier:

$$\mathcal{F}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$

Es posible establecer lo siguiente.

$$\mathcal{F}^{2}(f)(x) = f(-x),$$
$$\mathcal{F}^{4} = I.$$

Consecuentemente, es posible definir la suma:

$$\tilde{f} = f + \mathcal{F}(f) + \mathcal{F}^2(f) + \mathcal{F}^3(f),$$

que permite identificar funciones que son invariantes bajo combinaciones de aplicaciones iteradas de la transformada de Fourier.

Matriz de la Transformada Discreta de Fourier (DFT)

La matriz de la Transformada Discreta de Fourier (DFT) de tamaño $N \times N$ se define como:

$$F_{N} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \cdots & \omega^{N-1}\\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{bmatrix}, \quad (1)$$

donde ω es la raíz de la unidad:

$$\omega = e^{-2\pi i/N}. (2)$$

Ejercicios Propuestos

1. Resolver la ecuación parabólica en la recta real con condición inicial arbitraria u(x,0) usando la Transformada de Fourier:

$$u_t = ku_{xx}, \quad x \in (-\infty, \infty), \quad t > 0.$$

2. Resolver la ecuación hiperbólica en la recta real con condición inicial arbitraria u(x,0) y velocidad inicial $u_t(x,0) = 0$ usando la Transformada de Fourier:

$$u_{tt}=c^2u_{xx}, \quad x\in(-\infty,\infty), \quad t>0.$$

- 3. Demostrar que la función $\tilde{f} = f + \mathcal{F}(f) + \mathcal{F}^2(f) + \mathcal{F}^3(f)$ es un punto fijo de la transformada normalizada de Fourier.
- 4. Comprobar que la matriz DFT satisface $F_N^4 = I$.
- 5. Calcular numéricamente la iteración de la transformada de Fourier sobre una función arbitraria y analizar su convergencia.

