Proyecto PI-063-DICIHT: Identificación Aproximada de Sistemas Dinámicos Estructurados con Simetrías

Autómatas Finitos Topológicamente Controlados para la Industria 4.0

¹Centro de Innovación en Cómputo Científico CICC Escuela de Matemática y Ciencias de la Computación Universidad Nacional Autónoma de Honduras **UNAH-CU** Centre for de Analysis of Data-Driven Systems **CADDS**

Sesión de Presentación de Avances CADDS/IME, 2021

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Formulación del Problema

Cómputo de Modelos Predictivos Basados en Datos

- Dado un grupo finito G_N = {g₁,...,g_N} ⊂ U(n), un sistema dinámico discreto G_N-equivariante (Σ, 𝒴) y una serie de tiempo {x_t}_{t≥1} ⊂ Σ ⊂ C_n.
- Calcular/descubrir un modelo para el dispositivo:

que convierte el estado presente x_t en el estado futuro $x_{t+1} = \mathscr{T}(x_t)$ con base en una matriz de parámetros A_t a identificar.

 El dispositivo T recibe el nombre de operador de transición.

Motivación

Problemas, preguntas e ideas formuladas y presentadas por:

- Arveson: C*-algebras en álgebra lineal numérica.
- Kaheman, Kutz and Brunton: métodos basados en teoría de operadores para identificación de sistemas.
- Loring, Vides: Teoría-K de operadores en algebra lineal numérica.

(ロ) (同) (三) (三) (三) (○) (○)

Enfoque Gemelo Digital (Digital Twin)

Figura: Autómata finito correspondiente a un gemelo digital estándar.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Matrices de Trayectorias de Hankel

► Dado un conjunto de entrenamiento $\Sigma_T = \{x_1, ..., x_T\} \subset \mathbb{C}^n$

 ℋ_L(Σ_T) denota la matriz de trayectorias de Hankel definida por la expresión.

$$\mathscr{H}_{L}(\Sigma_{T}) = \begin{bmatrix} x_{1} & x_{2} & x_{3} & \cdots & x_{T-L+1} \\ x_{2} & x_{3} & x_{4} & \cdots & x_{T-L+2} \\ x_{3} & x_{4} & x_{5} & \cdots & x_{T-L+3} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ x_{L} & x_{L+1} & x_{L+2} & \cdots & x_{T} \end{bmatrix}$$

(ロ) (同) (三) (三) (三) (○) (○)

Matrices de Trayectorias de Hankel G_N-Estructuradas

- ▶ Dado un grupo finito $G_N = \{g_1, ..., g_N\} \subset \mathbb{U}(n)$.
- ▶ un conjunto de entrenamiento $\Sigma_T = \{x_1, ..., x_T\} \subset \mathbb{C}^n$
- $\mathscr{H}_L(\Sigma_T, G_N)$ denota la matriz de datos estructurada:

$$\mathscr{H}_{L}(\Sigma_{T}, G_{N}) = \begin{bmatrix} I_{L} \otimes g_{1} \mathscr{H}(\Sigma_{T}) & \cdots & I_{L} \otimes g_{N} \mathscr{H}_{L}(\Sigma_{T}) \end{bmatrix}$$

Reformulación Topológica no-conmutativa *C**-Representaciones

Problema de Conectividad No-conmutativa

- Dado un orden de error $\delta > 0$
- ▶ Dado un grupo finito $G_N = \{g_1, ..., g_N\} \subset \mathbb{U}(n),$
- datos de entrenamiento $\Sigma_T = \{x_t\}_{t=1}^T \subset \Sigma$
- una compresión $K : \mathbb{C}^n \times \mathbb{C}^L \to \mathbb{C}^n$
- Calcular/descubrir y una representación esparcida C([-1,1]) * C([-1,1]) → C*(H_{1,T}, H_{2,T}) ⊂ M_n(ℂ) ⊗ M_L(ℂ) tales que:

Existe
$$\hat{A}_t \in C^*(H_{1,T}, H_{2,T})$$
 tal que:
• $A_T I_L \otimes g_j = I_L \otimes g_j A_T$ para cada $g_j \in G_N$
• $K_L \left(\hat{A}_T \begin{bmatrix} x_t^\top & x_{t+1}^\top & \cdots & x_{t+L-1}^\top \end{bmatrix}^\top \right) \approx_{\mathscr{O}(\delta)} \mathfrak{T}(x_t), t = 1, \dots, T.$

Resultado Principal

Theorem

Existe un invariante drk, $*_{\delta}(\Sigma_{T})$ con valores en el grupo $K_{0}(\mathbb{C})$ que debe anularse para que el problema de conectividad no-conmutativa previo sea soluble.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ejemplo: Ilustración gráfica de obstrucción topológica

Figura: $drk_{\delta,*}(\Sigma_T) = 0, L = 17$ (primera fila), $drk_{\delta,*}(\Sigma_T) = 1, L = 16$ (segunda fila), $drk_{\delta,*}(\Sigma_T) = 1, L = 10$ (tercera fila). $drk_{\delta,*}(\Sigma_T) = 1, L = 5$ (cuarta fila)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Modelos predictivos calculados con TensorFlow

Figura: Predicción (línea roja) calculada utilizando TensorFlow de Google, Inc.

イロト イ理ト イヨト イヨト

Modelo predictivo calculado con SDSI Tool

Figura: Predicción (línea verde) calculada utilizando un ATC para ${\rm dr}k_{\delta}(\Sigma_{\mathcal{T}})=0.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Gemelos digitales para desprendimiento de vórtices

・ロ・・「聞・・叫・・」 うくの

Gemelos digitales para desprendimiento de vórtices

Figura: Señal sintética original (izquierda). Señal identificada por ATC (derecha) para $drk_{\delta}(\Sigma_{T}) = 0$.

Gemelos digitales en matemática epidemiológica

Figura: Curvas epidemiológicas de modelo SIR sintético (izquierda). Predicciones calculadas con ATC (derecha) para $drk_{\delta}(\Sigma_{T}) = 0$.

Gemelos digitales para identificación de ondas viajeras

Figura: Historial de evolución de amplitudes de solución de onda viajera para el modelo no lineal: $i\partial_t w + \partial_x^2 w + q|w|^2 w = 0$.

Gemelos digitales para identificación de ondas viajeras

Figura: Amplitudes de entrenamiento |w(t)| (arriba). Predicciones $|w_p(t)|$ calculadas con ATC para $drk_{\delta}(\Sigma_T) = 0$ (abajo).

Trabajo Futuro

- Aplicar esquemas ATC a la automatización de gestión de inventario.
- Aplicar esquemas ATC a porcesos de mantenimiento predictivo de equipos industriales.
- Aplicar esquemas ATC en compresión de datos.
- Aplicar esquemas ATC en precesamiento de imágenes.

(ロ) (同) (三) (三) (三) (○) (○)

 Aplicar esquemas ATC en modelación basada en desempeño de estructuras: edificios, puentes...

Referencias

- 1. W. Arveson. *C***-Algebras and Numerical Linear Algebra. Journal of Functional Analysis.
- Kadierdan Kaheman, J. Nathan Kutz and Steven L. Brunton (2020). SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences.
- 3. T. Loring, F. Vides (2020). Computing Floquet Hamiltonians with Symmetries. Journal of Mathematical Physics.
- 4. F. Vides (2021). Sparse system identification by low-rank approximation. Remitido.
- 5. F. Vides. GitHub web page:

https://cadds-lab.github.io/FredyVides.html